
Website Forensic Investigation
to Identify Evidence and Impact of Compromise

Yuta Takata1,2, Mitsuaki Akiyama1, Takeshi Yagi1, Takeshi Yada1, and Shigeki Goto2

1 NTT Secure Platform Laboratories, Japan.
{takata.yuta,akiyama.mitsuaki,yagi.takeshi,yada.takeshi}@lab.ntt.co.jp

2 Waseda University, Japan.
goto@goto.info.waseda.ac.jp

Abstract. Compromised websites that redirect users to malicious websites are
often used by attackers to distribute malware. These attackers compromise popu-
lar websites and integrate them into a drive-by download attack scheme to lure un-
suspecting users to malicious websites. An incident response organization such as
a CSIRT contributes to preventing the spread of malware infection by analyzing
compromised websites reported by users and sending abuse reports with detected
URLs to webmasters. However, these abuse reports with only URLs are not suf-
ficient to clean up the websites; therefore, webmasters cannot respond appropri-
ately to the report with just URLs. In addition, it is difficult to analyze malicious
websites across different client environments, i.e., a CSIRT and a webmaster,
because these websites change behavior depending on a client environment. To
expedite compromised website clean-up, it is important to provide fine-grained
information such as the precise position of compromised web content, malicious
URL relations, and the target range of client environments. In this paper, we pro-
pose a method of constructing a redirection graph with context, such as which
web content redirects to which malicious websites. Our system with the pro-
posed method analyzes a website in a multi-client environment to identify which
client environment is exposed to threats. We evaluated our system using crawling
datasets of approximately 2,000 compromised websites. As a result, our system
successfully identified compromised web content and malicious URL relations,
and the amount of web content and the number of URLs to be analyzed were
sufficient for incident responders by 0.8% and 15.0%, respectively. Furthermore,
it also can identify the target range of client environments in 30.4% of websites
and a vulnerability that has been used in malicious websites by leveraging the tar-
get information. This fine-grained information identified with our system would
dramatically makes the daily work of incident responders more efficient.

Keywords: Compromised Website, Drive-by Download, Redirection Graph

1 Introduction

Attackers redirect many unsuspecting users to malicious websites by compromising
popular websites and integrating them into a drive-by download attack scheme. One
security vendor reported that approximately 67% of malicious websites originated from
compromised websites [1]. For example, Darkleech attacks exploiting vulnerable Apache

2 Y. Takata et al.

modules had successfully compromised a large amount of websites; over 40,000 do-
mains and IP addresses by May 2013, including 15,000 that month alone [2]. This
means that even attentive users will be exposed to drive-by malware infections if high-
reputation websites are compromised. An incident response organization such as a
CSIRT (Computer Security Incident Response Team) contributes to preventing the spread
of malware infection by patrolling the Web and warning users. As part of the patrol, the
organization re-analyzes compromised websites reported by users, identifies evidence
of malicious websites, and shares this information [3]. This shared information is im-
portant to clean up compromised websites by reporting abuse to webmasters. Abuse
reporting has been conducted as a national project and a security service that contribute
to cleaning up of compromised websites by re-analyzing URLs shared from various
security vendors [4] and security products [5]. However, attackers build a redirection
chain to evade analysis as well as to dynamically and selectively inflict malware on
targeted users [6, 7]. On compromised websites, attackers can prevent any disclosure of
malicious content by injecting only redirection code that leads to malicious websites,
not exploit code or malware. This redirection chain also allows attackers to use cloaking
techniques to launch drive-by downloads depending on the user’s client environment
and makes it difficult to analyze [8, 9]. Therefore, to mitigate these anti-analysis tech-
niques and expedite the clean-up of compromised websites, it is important to identify
the evidence and impact of compromise. Identifying evidence that a website has been
compromised, such as the precise position of compromised web content and malicious
URL relations in a redirection chain, contributes to shortening incident response time
and increasing clean-up rates. Identifying impact of a compromised website, such as
the target range of client environments and information of vulnerability abused in ma-
licious websites, contributes to shortening re-analysis time in addition to accelerating
security updates to users of the targeted client environments. Li et al. reported that it
is important to give more detailed diagnostic information, such as injected content, to
webmasters because they lacked sufficient expertise to clean up their websites [5]. They
also found that the most challenging incident type relates to redirect attacks where web-
sites become cloaked gateways.

To identify evidence and impact of compromise, we propose a method of construct-
ing a redirection graph by tracing redirection chains and JavaScript executions on web-
sites. After extracting a malicious path, which is a redirection path to a malicious URL,
our method identifies web content that is the origin of the redirection, i.e., compro-
mised web content, by traversing backwards along the malicious path. Our system with
the proposed method accesses to a website using a multi-client environment to iden-
tify targeted client environments. This environment detects the differences of redirected
URLs using these multiple analysis results while minimizing the number of environ-
ment profiles by designing them on the basis of known vulnerability information. To
the best our knowledge, our system is the first tool for website forensics that can auto-
matically identify evidence and impact of compromise on the basis of useful forensic
artifacts, e.g., packet capture data or website data. Specifically, this system can reveal
which web content does the redirection originate, which URLs are associated with the
attacks, and which client environment is exposed to threats. This fine-grained informa-

Website Forensic Investigation to Identify Evidence and Impact of Compromise 3

Table 1. Compromised web content

HTML <iframe src=“http://a.example/page/now counter.php?userCode=” width=0 height=0></iframe>
<!–74be16–><script>document.write(‘<iframe src=“http://b.example/in.cgi?19” ... ></iframe>’);</script>

JavaScript document.writeln(“<script src=\“http://c.example/jj.js\” type=\“text/javascript\”></script>”);
top.location.href = “http://d.example/”;

tion would provide practical directions to CSIRTs/security vendors for prompt incident
response and expedite compromised website clean-up.

In summary, we make the following contributions.

– Our system successfully identified the precise position of compromised web con-
tent and malicious URL relations. As a result, the amount of web content and the
number of URLs to be analyzed were sufficient for incident responders by 0.8%
and 15.0%, respectively.

– We show that our system can automatically identify client-dependent redirections
and the target range of client environments in 30.4% of websites. Using target range
information, we also can identify a vulnerability that has been used in malicious
websites.

The rest of this paper is structured as follows. In Section 2, we provide an overview
of compromised website response and explain problems in conventional methods. We
introduce our proposed method for addressing the challenges in Section 3. In Section 4,
we explain an experiment conducted to evaluate our method and discuss case studies
on our findings in Section 5. We discuss the limitations of our method in Section 6 and
review related work in Section 7. We conclude the paper in Section 8.

2 Overview of Compromised Website Response

Most of techniques used by attackers on compromised websites are injections of redi-
rection code to malicious URLs rather than of exploit code or malware. Therefore,
identifying web content that is the origin of redirection (redirection origin) is important
in the analysis of compromised websites. However, attackers use various anti-analysis
techniques to evade the defender’s analysis and detection. In this section, we explain
web compromise and anti-analysis techniques. We also provide an overview of com-
promised website response by CSIRTs/security vendors and explain problems in con-
ventional methods.

2.1 Web Compromise Technique

Attackers use redirect code injections using HTML tags or JavaScript to compromise
websites.

HTML-based Compromise. HTML-based compromises inject the redirection code
of the iframe and script tags listed in Table 1. These HTML tags are mainly injected
into unusual positions in the Document Object Model (DOM) tree such as outside an

4 Y. Takata et al.

html tag or body tag. In the case of an iframe tag, many redirections occur without a
user being aware by injecting the tag in an invisible state on the browser. A script tag
is also used in combination with the following JavaScript-based compromise. However,
since these tags are directly written in an HTML file, it is easy to analyze them and find
the redirection origin.

JavaScript-based Compromise. JavaScript-based compromises execute code that dy-
namically generates the above-mentioned HTML tags (iframe and script tags) us-
ing document.write, innerHTML, and appendChild, shown in Table 1 (DOM API
code). The location object that redirects to a different URL is also injected, but the
user is aware of the automatic redirection because it explicitly switches the browser
frame to a different URL. Therefore, it is rare to use a location object as a first step.
JavaScript-based compromises can target various web content, e.g., that enclosed by a
script tag and that of a URL that is loaded by a script tag. DOM API and code sep-
aration make it difficult to analyze JavaScript. In addition, attackers utilize obfuscation
techniques, as described in the next section, on JavaScript to conceal the redirection
origin.

2.2 Anti-analysis Technique

In most cases, attackers leverage various existing web techniques, such as code obfus-
cation, redirection chains, and browser fingerprinting, to protect their own malicious
content against the inspections of CSIRTs/security vendors.

Code Obfuscation. Code obfuscation is generally used for code protection and code
minimization. For example, obfuscated JavaScript is de-obfuscated by string manipula-
tion functions, and this de-obfuscated string is executed as JavaScript code by functions
such as eval(), setInterval(), and setTimeout(). Malicious websites try to pre-
vent analysis by using complicated obfuscation techniques combined with compression
techniques3, cryptographic techniques, and browser-specific functions.

Redirection Chain. Drive-by download attacks redirect users of a landing website
(landing URL) to malicious websites (exploit URL) via multiple websites (redirection
URL). When a client accesses to an exploit URL, an attack code that exploits the vul-
nerabilities of the web browser and/or its plugins is executed and forces the client to
download and install malware from a website (malware distribution URL) [6]. This
redirection chain is composed of HTTP 3XX in addition to HTML tags and JavaScript,
discussed in Section 2.1. Attackers can abuse compromised popular websites and web
search results as landing URLs to lure unsuspecting users by constructing an inter-
domain redirection chain to malicious URLs [10]. Therefore they only have to inject
redirection code rather than exploit code or malware for website compromises and
can prevent any disclosure of malicious content. Moreover, multiple redirection stages
contribute to reducing operation cost of attacks since compromised websites under the

3 D. Edwards, “/packer/,” http://dean.edwards.name/packer/

Website Forensic Investigation to Identify Evidence and Impact of Compromise 5

User!

! Re-analyze or Patrol
" Abuse Report

Compromised
Website

Report!

Benign
Website

Malicious
Website

Redirection Chain

Client-dependent
Redirection

CSIRT / Security Vendor
$ Information Collection

Cloak malicious
website against
scanners % Access!

Operator!

Attacker!
1!

2!
3!

Fig. 1. Overview of compromised website response

chain can be integrated into a different malware campaign by only changing the redi-
rection URLs.

Browser Fingerprint. Browser fingerprinting, which is a method of profiling the envi-
ronment of a client, i.e., browser and browser plugin, is generally used for user tracking
and distributing web content according to the environment. Attackers leverage browser
fingerprinting to target clients by redirecting an exploitable user to a malicious URL
on the basis of the client’s fingerprint. This technique, called “cloaking,” is also abused
for circumventing the detection of CSIRTs/security vendors by redirecting them to a
benign URL [8].

2.3 Problems in Conventional Methods for Compromised Website Response

An incident response organization, such as a CSIRT, constantly patrols whether web-
sites that are under own organization and hosting services have been compromised.
Such organization also re-analyzes compromised websites that are reported by general
public users and sends abuse reports with the detected URL to webmasters after con-
firming the reproducibility of attacks (Fig. 1) [3]. However, in many cases, an abuse
report with only URLs generated in this way is not sufficient to clean up compromised
websites; therefore, webmasters cannot respond appropriately to the report with just
URLs. Moreover, malicious websites cannot always be detected using analysis environ-
ments due to cloaking. Therefore, to create detailed abuse reports and increase clean-up
rates, the following information is required.

– Redirection origin: Identifying fine-grained redirection origin as the evidence that
a website has been compromised, such as which web content redirects to which ma-
licious website, is important for webmasters when cleaning up compromised web
content precisely. Thus, we must handle complicated obfuscations and redirection
chains.

– Targeted client environments: Identifying targeted client environments as the im-
pact of a compromised website, such as which versions of browser and/or plugins
are redirected to malicious websites, is beneficial for confirming the reproducibility
of attacks. In addition, we also can accelerate security updates by warning users of
the targeted client environments. Thus, we must mitigate cloaking techniques.

However, conventional methods are not sufficient for identifying the information
stated above. Methods of detecting website compromises that compare original web

6 Y. Takata et al.

HTML!

<script src=“URL_B”></script>! URL_B !

URL_C !

<iframe src=“URL_C”></iframe>!

URL_A !

1. Access URL_B with
a Referer header of URL_A

2. Create an iframe tag by executing JavaScript in URL_B

3. Access URL_C with
a Referer header of URL_A

JavaScript!

document.write(“<iframe src=‘URL_C’ />”);!

URL_D!

Fig. 2. Semantic gap between Referer header and JavaScript redirection

content to the compromised web content have been proposed [11, 12]. Moreover, Trip-
Wire [13], widely known as a compromise detection tool, can detect file operations,
such as modification and deletion, by monitoring files on a web server. However, these
methods have limitations in terms of operation; for example, they require the original
files and can detect only compromised web content on the own web server.

Methods for constructing a redirection graph, in which the nodes represent accessed
URLs and directed edges represent redirection methods, by using a Referer header or
a Location header [14] and by leveraging some heuristics/features in addition to the
HTTP headers [15] have been proposed. However, in many cases, the Referer header
is not set. Additionally, these methods cannot connect tricky links such as a redirection
with an inconsistent Referer header. This semantic gap in the Referer header occurs
when the redirection results from an external JavaScript.

We now give more details on the semantic gap in a redirection graph using the
website in Fig. 2. In this website, a web browser loads JavaScript of URL B by using a
script tag in URL A accessed first. Next, the DOM API code in URL B is executed. In
this case, an iframe tag that points to URL C is inserted into the HTML of URL A. As
a result, an HTTP request to URL C is generated with the Referer header of URL A.
The Referer header indicates the base URL, i.e., URL A, of the web content that
is rendered on the web browser, not the external JavaScript URL, i.e., URL B, that
contains the redirection code. This semantic gap occurs due to the general behavior
of web browsers and is frequently observed on legitimate websites. However, this gap
results in a logically incorrect redirection graph without some edges, for example, an
edge from URL B to URL C is not connected, which we call a semantic gap edge.
In other words, when URL D is a malicious URL, a redirection graph constructed by
conventional methods cannot identify the document.write statement in URL B as a
redirection origin due to a semantic gap even if traversing backwards along the path
from URL D to URL A.

3 Proposed Method and System

To identify the redirection origin, we propose a method of constructing a redirection
graph with context, such as which content redirects to which malicious websites, by
tracing the redirection and JavaScript execution processes. The combination of a redi-
rection graph and a JavaScript execution graph, which we call a “redirection call graph”
(RCG), can bridge semantic gap edges and contribute to identifying the precise position

Website Forensic Investigation to Identify Evidence and Impact of Compromise 7

!"Identifying Redirection Origin!

#"Identifying Targeted Client Environment!

Constructing
RCG

Extracting
Compromised Content

Identifying
Malicious Node

RCG!

Malicious
Path!

Behavior
Info!

Malicious URL!

Compromised Web Content!

Crawl Result!

Blacklist!

Matching
Results

Result!

RCG!

Vuln.
DB!

Instrumented
Browser

Client Config!

Monitoring
Behavior

Composing Client

Fig. 3. System overview

of redirection origins. We implemented a system with our method, as shown in Fig. 3.
Our system accesses to a website using a multi-client environment to identify targeted
client environments while constructing RCGs. It detects the differences of accessed
URLs among the multiple analysis results while minimizing the number of environ-
ment profiles by designing them on the basis of known vulnerability information. We
detail each system component in the following subsections.

3.1 Identifying Redirection Origin as Evidence of Compromise

Our method of identifying redirection origins is composed of the monitoring behav-
ior phase, the constructing RCG phase, the identifying malicious node phase, and the
extracting compromised content phase (1⃝ in Figure 3).

Monitoring Behavior. Our system accesses websites and collects redirection and JavaScript
execution traces by monitoring behaviors during the process of interpreting fetched web
content. We explain the behavioral information as follows.

– HTTP transaction: An HTTP response with the status code 3XX is captured in
HTTP transactions for tracing HTTP redirections. When an HTTP server responds
to this status code, the HTTP request URL, URL in the Location header, and
HTTP status code are recorded as a redirection source URL, redirection destination
URL, and redirection method, respectively.

– HTML parsing: Our system monitors HTML tags, e.g., iframe, frame, script,
meta, object, embed, and applet, that redirect to a different URL during HTML
parsing for tracing redirections with HTML tags. When these HTML tags are
parsed, the URL that contains the HTML tag, URL to which the HTML tag points,
and HTML tag name are recorded as a redirection source URL, redirection desti-
nation URL, and redirection method, respectively.

– JavaScript API hooking: Our system monitors executed JavaScript code and JavaScript
function calls, e.g., eval, setTimeout, setInterval, window object functions,
location object functions, element object functions, node object functions, and
document object functions, to construct a JavaScript execution graph and con-
nects semantic gap edges. Then, to trace redirections with JavaScript, the JavaScript

8 Y. Takata et al.

script tag !

document.write(iframe)

HTTP301 !

URL D!
URL_A !

URL_B !

URL_D!URL_C !

URL_A !

JS_3 !

Referer!

Location!
Referer!

Proposed Method Conventional Method

iframe tag !

eval !

URL_B !

JS_1 ! JS_2 !

URL_C !

Fig. 4. Comparison of graphs constructed with proposed and conventional methods

URL, URL to which the JavaScript points, and JavaScript function name are recorded
as a redirection source URL, redirection destination URL, and redirection method,
respectively.

Constructing Redirection Call Graph. This phase constructs a RCG based on recorded
trace information. As a result, a directed graph with the following nodes and edges, such
as in Fig. 4 on the left, is structured.

– Redirection node and edge: A redirection node represents an accessed URL. A
redirection edge represents a redirection method and connects redirection nodes.
To construct these nodes and edges, we use information obtained from HTTP trans-
action and HTML parsing in the previous phase.

– JavaScript execution node and edge: A JavaScript execution node represents
code executed by the JavaScript interpreter, for example, code executed while ren-
dering websites, code executed by an event, e.g., onload and onclick, code dy-
namically executed by eval, setInterval, and setTimeout. We can identify
which code is executed by tracing these code executions. This node is managed by
the hash value of the code. Figure 4 shows that a redirection graph contains the
hash values of JavaScript execution nodes (JS 1, JS 2, and JS 3 in this case). A
JavaScript execution edge represents a JavaScript execution method and connects
JavaScript execution nodes, for example, browser rendering, JavaScript events,
eval, setInterval, and setTimeout. In addition, this edge contains redirection
methods to different URLs to identify JavaScript redirections.

– Semantic gap edge: Our method associates an HTML tag generated by JavaScript
with the JavaScript URL to bridge a semantic gap edge. When a redirection occurs
via parsing an HTML tag, e.g., an iframe tag and a script tag, the source URL
is identified from not only the base URL but also the associated JavaScript URL if
the HTML tag is generated by JavaScript.

We explain a semantic gap edge using Fig. 2. When document.write is executed
in URL B, a pair of URL B and the iframe tag generated by document.write are
saved. Next, when the iframe tag inserted in URL A is parsed, URL B is uniquely
identified from the pair information. Finally, when the redirection of the iframe tag
occurs, an edge from URL B to URL C is connected. Then, the redirection method of
the edge from URL B to URL C is set to the DOM API function and HTML tag name,
“document.write(iframe).”

Website Forensic Investigation to Identify Evidence and Impact of Compromise 9

Figure 4 depicts a comparison of Fig. 2 between a redirection graph using the pre-
ceding proposed methods and a conventional redirection graph. Our method can iden-
tify an obfuscation process from JS 1 to JS 2 by eval and connect an edge from URL B
to URL C by document.write. However, none of the information mentioned above
can be identified from the conventional redirection graph. This information is necessary
for incident responders to conduct efficient and effective website forensics, but conven-
tional methods cannot identify this information.

Identifying Malicious Node. This phase identifies malicious nodes in a RCG con-
structed in the previous phase using a blacklist of known malicious URLs. These known
malicious URLs can be obtained from detection results by using conventional tech-
niques such as a high-interaction honeyclient and anti-virus. In addition to matching
exact malicious URLs, we detected suspicious URLs of the same domain name and
the same number of path hierarchies or the same number of domain name hierarchies
and the same path compared with the malicious URLs. This suspicious URL detec-
tion helps minimize the effects of URLs using DGA and/or random strings. This phase
also extracts malicious paths from identified malicious nodes to the node of the landing
URL.

Extracting Compromised Content. A redirection origin is extracted by traversing
backwards along a malicious path, which is identified in the previous phase, from the
leaf URL to the origin URL. We explain the extraction method in Fig. 4. If the redi-
rection path from URL A to URL D is classified as malicious, e.g., JS 3 contains the
exploit code, the script tag that points to URL B in URL A is extracted as a redi-
rection origin. A redirection origin contains the origin/leaf URLs and the redirection
method/destination URL. Moreover, to identify the precise position of redirection ori-
gins, this phase extracts DOM information, such as the DOM tree structure, in the case
of an HTML-based compromise. In the case of a JavaScript-based compromise, the
JavaScript execution information is extracted such as executed code.

It is important to note that redirection origin of the landing URL is not always com-
promised web content. For example, if JS 1 in Fig. 4 is compromised web content, the
script tag in URL A described above is false positive. Therefore, this phase mini-
mizes false positives by following a malicious path from the landing URL to the URL
with a domain that is different from the source URL after traversing backwards. This
means that we consider web content that generates such inter-domain edge as a redi-
rection origin because the domain of compromised websites is different from that of
malicious websites [6]. Specifically, JS 1 in URL B is detected as a redirection origin
by the difference between URL B’s domain and URL C’s domain.

3.2 Identifying Targeted Client Environment as Impact of Compromise

To identify targeted client environments, our system analyzes a website in a multi-
client environment that increase the possibility of changing the behavior of a website
by browser fingerprinting, such as boundary testing. The analysis environment is com-
posed of the composing client phase and the matching results phase (2⃝ in Figure 3).

10 Y. Takata et al.

Table 2. Matrix of CVEs and flash player versions
2013-
0634

2013-
5329

2014-
0497

2014-
0502

2014-
0515

2014-
0556

2014-
0569

2014-
8440

2014-
8439

2015-
0310

2015-
0311

2015-
0313

2015-
0336

2015-
0359

10.1.102.64 ✓
11 ✓ ✓ ✓ ✓

11.2.202.233 ✓ ✓ ✓ ✓ ✓ ✓ ✓
11.5.502.149 ✓ ✓ ✓
11.2.202.270 ✓ ✓ ✓ ✓ ✓ ✓
11.7.700.169 ✓ ✓ ✓ ✓
11.7.700.225 ✓ ✓
11.7.700.252 ✓ ✓
11.7.700.257 ✓ ✓ ✓
11.2.202.332 ✓ ✓ ✓ ✓ ✓

12.0.0.44 ✓
11.2.202.336 ✓ ✓ ✓ ✓
11.7.700.269 ✓
11.2.202.341 ✓ ✓ ✓
13.0.0.206 ✓ ✓
14.0.0.125 ✓ ✓ ✓ ✓ ✓ ✓ ✓
14.0.0.179 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14.0.0.176 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
13.0.0.244 ✓
15.0.0.152 ✓ ✓ ✓ ✓ ✓ ✓
13.0.0.250 ✓
15.0.0.189 ✓ ✓ ✓ ✓ ✓ ✓

11.2.202.423 ✓
15.0.0.239 ✓ ✓ ✓ ✓ ✓
13.0.0.260 ✓

11.2.202.438 ✓
16.0.0.287 ✓ ✓ ✓ ✓

11.2.202.440 ✓
13.0.0.264 ✓ ✓ ✓
16.0.0.305 ✓
17.0.0.134 ✓

2016-
AAAA

2016-
BBBB

2016-
CCCC

2016-
DDDD

Plugin 1.0.0! "!

Plugin 1.0.1! "!

Plugin 2.0.0! "! "! "!

Plugin 2.1.0! "! "!

Aggregate duplication !

2016-
AAAA

2016-
BBBB

2016-CCCC
2016-DDDD

Plugin 1.0.0
Plugin 1.0.1!

"!

Plugin 2.0.0! "! "!

Plugin 2.1.0! "!

version!

CVE!

version!

CVE!

Fig. 5. Aggregation of dupli-
cated CVEs and plugin ver-
sions

Table 3. Number of plugin
versions

JRE PDF Flash
Exploit kits from 2014–2015 14 1 31
Exploit kits from 2011–2013 37 23 32

Official installer 193 103 251

Composing Client. This phase decides on a client environment from a matrix of vul-
nerabilities and its affected client environments. Our method can decrease the number
of client environments by aggregating the environment’s duplications. If we can predict
potential targeted vulnerabilities in websites, the number can be further decreased by
filtering out the corresponding columns of the matrix (Fig. 5). For example, we show a
matrix of the matching of known vulnerability information obtained from CVE Details4

and affected versions of Adobe Flash Player in Table 2. We further decreased elements
of the matrix by utilizing the vulnerability information of exploit kits from 2014–2015
obtained from contagio5. In Table 2, the versions of Adobe Flash Player were aggre-
gated from 251 to 31. Note that oldest version is selected from aggregated versions.

Matching Results. Our system compares crawl results of various environments and
detects differences of accessed URLs among the results, i.e., it investigates whether
each crawl result contains malicious URLs. From the matching results, we can identify
which client environment is redirected to a malicious URL.

3.3 Implementation

To monitor fine-grained processes of HTML parsing and JavaScript execution for con-
structing a RCG and to configure various client environments, we need to be able to
hook browser processes and modify the environment profiles. Therefore, we used a

4 http://www.cvedetails.com/
5 http://contagiodata.blogspot.jp/2014/12/exploit-kits-2014.html

Website Forensic Investigation to Identify Evidence and Impact of Compromise 11

High-interaction
honeyclient

2. Capture HTTP communication

1. Crawl website

Our system
(Extended HtmlUnit)

Web content

Web content

4. Analyze website Replay
proxy !

NW
Trace!

Web content
Web content

3. Load

Fig. 6. Experimental environment

browser emulator, HtmlUnit6, in our system and implemented the monitoring and con-
figuration functions into it. In this paper, we focused on plugins, Java Runtime Environ-
ment (JRE), Adobe Reader (PDF), and Adobe Flash Player (Flash) for a multi-client
environment because many recent exploit kits check for the presence of vulnerable ver-
sions of several plugins [7, 9]. Therefore, we collected vulnerability information on
these plugins from CVE Details and contagio mentioned in the previous subsection.
The numbers of aggregated versions of JRE, PDF, and Flash are listed in Table 3. The
rows of Table 3 represent the number of plugins on the basis of vulnerability informa-
tion of exploit kits from 2014–2015, exploit kits from 2011–2013, and the number of
official installers we found manually. Table 3 shows that our method can dramatically
reduce the number of environment profiles by utilizing known vulnerability informa-
tion. It is important to note that our system can change environment profiles on the
basis of not only plugins but also operating systems or browsers in the same way.

4 Experiment and Evaluation

We evaluated the effectiveness and performance of our system using the HTTP com-
munication data of 2,058 compromised websites that have been preliminarily detected
during a four-year period (2011–2015). Although we can run our system to reveal ma-
licious content and the functions of websites on the live Internet, online crawlings,
especially by our multi-client environment, place a load on web servers and make it
easy to detect inspections by server-side cloaking. Therefore, it is appropriate for uti-
lizing our system in a local environment while leveraging forensic artifacts that have
been already detected. In this experiment, we first investigated the impact of semantic
gaps to evaluate the effectiveness of a RCG. More precisely, we evaluated whether a
RCG can precisely connect more links and identify fine-grained redirection chains than
a conventional redirection graph. Next, we analyzed redirection origins extracted from
malicious paths and investigated the statistical trend regarding website compromises.
Finally, we evaluated whether our system can identify targeted client environments and
the target range.

4.1 Experimental Environment.

The experimental environment for our system was composed of a high-interaction hon-
eyclient, a replay proxy, and our system, as shown in Fig. 6.

6 Gargoyle Software Inc., http://htmlunit.sourceforge.net/

12 Y. Takata et al.

High-interaction Honeyclient. We used HTTP communication data of websites that
were preliminary detected drive-by download attacks by a high-interaction honeyclient [16].
Exploit URLs and malware distribution URLs detected by the honeyclient were also
used as a blacklist in the identifying malicious node phase.

Replay Proxy. A replay proxy responds to a HTTP request with web content on the
basis of a URL using HTTP communication data. Thus, due to the dynamic nature of
modern websites, some HTTP requests may not match any of the original data. This oc-
curs when a URL using time-dependent or random parameters is included in the data.
To compensate for dynamically generated URLs, we used an approximate matching ap-
proach, which was inspired from a method [17], during replay. This approach measures
the similarity between a requested URL and URLs with the same domain and the same
file path but different parameters in the HTTP communication data. To compute the
similarity score, this approach calculates a Jaccard index of the set of parameter names.
Finally, the proxy responds to a HTTP request with web content on the basis of the URL
of a score that is higher than a threshold. The threshold was set to a high score, e.g.,
0.9, to prevent false positives, and no false positives were observed in this experiment.
Note that the purpose of this study is to identify evidence and impact of compromise,
and not to propose a traffic replay method.

Our System. Our system, which is the extended HtmlUnit described in Section 3.3, an-
alyzes web content and stores the results through accesses to the replay proxy. Then, to
further reduce the analysis time, we used our multi-client environment to only websites
that tried to use browser fingerprinting. Browser fingerprinting can be detected by mon-
itoring the use of the name and version strings of the client environment in JavaScript
function arguments and object properties. Therefore, we preliminarily detected browser
fingerprinting by analyzing a website once. The results of preliminary crawls also were
used for analyzing a website that does not use browser fingerprinting.

We obtained the experimental results presented in this section by using two servers,
both running Ubuntu 12.01. Our replay proxy replayed the HTTP communication data
on one server (2.93-GHz processor and 24 GB of RAM), and our system evaluated web
content on the other server (3.16-GHz processor and 4 GB of RAM).

4.2 Evaluation of Redirection Call Graph and Redirection Origin

Constructing Redirection Graph. We evaluated how many nodes (URLs) can be
connected with the proposed method compared with conventional methods. We com-
puted the differences between the number of nodes on malicious paths identified by the
proposed method (PRO) and conventional methods. As the conventional methods, we
implemented originally the referer-based method (REF) [14] and the heuristic-based
method (HEU) [15]. As a result, the number of nodes identified by only PRO was 1,068
and 367 compared with REF and HEU, respectively. We found through manual inspec-
tion that these nodes were false negatives of the conventional methods caused by a
redirection without a Referer header or with a semantic gap. The semantic gap edge
was included in 16.6% of websites. In addition, the number of nodes identified by only

Website Forensic Investigation to Identify Evidence and Impact of Compromise 13

Table 4. Breakdown of redirection graph without malicious path

Category #graph Reason Handling

Sophisticated browser fingerprinting 231 Anti-virus detection and browser-specific JavaScript property Analyze it with a real browser
URLs with DGA and/or random strings 165 Lack of approximate matching and suspicious URL detection ability Improve accuracy of algorithm
Emulator evasion 122 Defect of DOM implementation in HtmlUnit Fix it
Time-dependent redirection 57 Past crawl data Analyze it immediately after detection
VBScript 4 Unsupported in HtmlUnit Analyze it with real browser

Table 5. Analysis of client-dependent redirection with browser fingerprinting

Detected:Suspicious:Unknown #crawls Description

1:0:1 359 Client-dependent redirection with browser fingerprinting
0:1:1 117 Client-dependent redirection with browser fingerprinting
1:1:1 149 Client-dependent redirection with browser fingerprinting
0:0:1 209 Emulator evasion, time-dependent redirection, etc. (see Table 4)
1:1:0 226 Malicious websites with DGA-domain and/or random path
0:1:0 91 Malicious websites with DGA-domain and/or random path
1:0:0 370 Simple malicious websites

conventional methods was 0 and 9 compared with REF and HEU, respectively. How-
ever, these nodes were false positives (noise URLs) caused by linking a likely edge with
the rule “Domain-in-URL” of HEU. These results show that the proposed method can
accurately construct a redirection graph and identify malicious redirection chains, but
conventional methods cannot.

In this evaluation, we found several redirection graphs without a malicious path.
Therefore, we measured the analysis capabilities of our system by calculating its reach-
ability to malicious URLs that the high-interaction honeyclient detected. As a result,
our system identified malicious paths from 1,479 (71.9%) websites among 2,058 web-
sites. We give more details on the websites that could not reach malicious URLs in the
next subsection, i.e., these websites correspond to unknown or false negatives.

Redirection Graph without Malicious Path. We manually analyzed the causes of
the incomplete redirection graphs that did not contain malicious URLs, i.e., malicious
nodes. Table 4 shows a breakdown of redirection graphs without a malicious path. The
most common sophisticated browser fingerprinting in this breakdown changed behavior
on the basis of the presence of a specific property of JavaScript or security vendor prod-
ucts. The JavaScript property exists in only Internet Explorer, e.g., window.sidebar,
and is abused as an indirect browser fingerprint by attackers. Many methods of such
browser fingerprinting are proposed and also known to affect behavior of not only
a browser emulator but also a real browser [18]. Attackers also can maliciously ac-
cess a file system and check the presence of security vendor products through Internet
Explorer by abusing information disclosure vulnerability, i.e., CVE-2013-7331. Our
browser emulator could not be redirected to malicious URLs because it did not execute
the environment-specific code and exploit code. The emulator evasion in Table 4 was
caused by a defect of DOM implementation in HtmlUnit. However, we can mitigate
the evasion by improving the behavior emulation since a redirection graph could be ac-
curately constructed by fixing this defect. The other causes were lack of approximate
matching and suspicious URL detection ability, time-dependent redirections, and use of
VBScript.

14 Y. Takata et al.

Fig. 7. Identification of target range of flash player version

Extracting Compromised Web Content. To investigate the statistical trend regarding
compromised web content and compromise methods, we analyzed redirection origins
extracted from malicious paths. Compromise methods were composed of 43% HTML-
based compromises, 9% JavaScript-based compromises, and 47% DOM API code in-
jections. Almost all HTML-based compromises injected automatic redirections to dif-
ferent URLs using script and iframe tags. The DOM API code also injected 98%
iframe tags and 2% script tags. These injected HTML tags were written in strange
positions such as outside the html tag or body tag (5%) with small area (width<15 or
height<15 or area<30; 20%) or outside the display (72%).

We also investigated redirection paths from compromised web content. As a result,
the semantic gap edge was included in 33% of redirection paths, which made it difficult
to analyze it. We will give two case studies of these semantic gap edges in Section 5.2.

4.3 Evaluation of Targeted Client Environments

We evaluated whether our system can identify which client environment is redirected to
a malicious URL. The client environments emulated each plugin, as shown in Table 3,
on the basis of the observation period of the websites and the browser fingerprint ac-
quired by the websites. The crawl results per each environment were categorized into
three groups: detected crawls that contain malicious URLs, suspicious crawls that con-
tain suspicious URLs, and unknown crawls that contain neither. As a result of com-
paring crawl results per each website, we identified client-dependent redirections that
contain detected and/or suspicious crawl results at the same time as unknown crawl re-
sults from 625 (30.4%) of websites (Table 5). These websites changed the destination
URL depending on the difference among the plugin versions. We plot these detected
and/or suspicious crawl results in Fig. 7, in which the vertical axis indicates versions
of Flash (left is from exploit kits from 2011–2013 and right is from exploit kits from
2014–2015) and horizontal axis indicates crawl results on the order of the time scale.
Figure 7 shows that some of the results were widely detected, and the others were de-
tected by only specific versions. We found through manual inspection that these results
were derived from the exploit kit periods of 2011–2013 and 2014–2015. This means
that client environments based on information of exploit kits from 2011–2013 were

Website Forensic Investigation to Identify Evidence and Impact of Compromise 15

script tag !

document.write(iframe)

meta tag !

http://DOMAIN1.rr.nu/
nl.php?p=d !

http://DOMAIN3.com/?[a-zA-Z0-9]
{4,10}=[a-zA-Z0-9%]* !

http://DOMAIN2.rr.nu/
n.php?h=1&s=nl!

Landing URL
of DOMAIN0!

JS_4 !
location!

http://DOMAIN4.com/[a-zA-Z0-9]{8,10}?
[a-zA-Z0-9]{4,10}=[a-zA-Z0-9%]* !

HTTP302 !

http://DOMAIN4.net/i.html! http://DOMAIN4.net/[a-zA-Z0-9]{6}.jar!

JS_5 !

iframe tag ! applet tag !

Fig. 8. Malicious path built using Styx exploit kit

not redirected to malicious websites observed from 2014–2015 and vice versa. Further-
more, as a result of analyzing websites of the same detection pattern, we found that
these websites used the same browser fingerprinting code and redirection code. These
results show that it is important to change a client environment for analysis depending
on that attack trend of that time. In addition, using these multiple analysis results, we
can categorize malicious infrastructures, such as a vulnerability (see Section 5.3).

4.4 Performance Overhead

We evaluated the total time and the average time of analyzing 2,058 websites with
our system. The results indicated that the time costs were 685,773 sec and 333 sec,
respectively. Since 90 % of benign website crawlings done by the high-interaction hon-
eyclient that detected compromised websites used in this experiment finished within154
sec [16], the analysis time of our system took approximately twice as long. The perfor-
mance of our system, however, clearly depends on the number of environment profiles.
The analysis time per one environment was only 12 sec on average. Therefore, our
system is appropriate for frequent re-analysis of website because the browser emulator
does not require the rendering time of a website and the execution time of exploit code.
In addition, since the browser emulator can be more easily deployable and parallelized
compared with a high-interaction honeyclient that individually requires a real browser
whenever the environment is changed, performance can be further improved.

5 Case Studies

We manually analyzed redirection origins, redirection paths, and client-dependent redi-
rection code. Among these manual inspections, we now describe notable samples.

5.1 Compromised Websites for Malware Campaign

We first show an example of malicious paths constructed from crawl results, which
contained the leaf URL of a .jar file extension (Figure 8). The redirection started from
a script tag in the landing URL to an applet tag that points to the leaf URL via
a location, meta tag, HTTP302, iframe tag, as shown in Fig. 8. Since our system
cannot execute a Java archive file, it stopped at the URL of a .jar file extension. These
above features, characteristic lexical features of URLs, and facts of data observed from

16 Y. Takata et al.

iframe tag !

appendChild(iframe) !

http://DOMAIN6.br/28562245.html
http://DOMAIN6.br/

98765.pdf

http://DOMAIN5.nl/mltools.js

JS_6 ! JS_7 !
eval !

script tag !Landing URL
of DOMAIN5!

iframe tag !

document.write(iframe)!
JS_8 !

Fig. 9. Malicious path that contains obfuscated semantic gap edge

iframe tag !

document.write(iframe)!

http://DOMAIN9.nl/
91213516.html

http://DOMAIN7.it/jquery.min.js

JS_9 !
script tag !

Landing URL
of DOMAIN7!

HTTP302 !

http://DOMAIN7.it/jquery.easing.js

JS_10 !

http://DOMAIN8.com/
showthread.php

document.write(iframe)!

iframe tag !

iframe tag !

script tag !

Fig. 10. Malicious path that contains multiple semantic gap edges

Oct. – Nov., 2012 suggest that the landing website was injected with a script tag
that redirects to a malicious website built using the Styx exploit kit [19]. We have also
identified malware campaigns with other exploit kits such as Blackhole, RedKit, Flash
Pack, RIG, Nuclear, and Angler.

5.2 Sophisticated Semantic Gap

Obfuscated Semantic Gap Edge. We depict an example of malicious paths that con-
tained dynamically generated code and a semantic gap in Fig. 9. The semantic gap was
caused by DOM API code (JS 7) in obfuscated code (JS 6) injected by compromising.
Conventional methods could not completely identify these malicious paths because the
link to the URL of DOMAIN5 could not be connected due to the semantic gap and the
destination URL of DOMAIN6 is concealed in the obfuscated code, i.e., JS 6.

Multiple Compromised Web Content. We show an example of a part of RCGs con-
structed from crawl results, which contain two or more differences in the number of
identified URLs between PRO and REF/HEU in Section 4.2 (Figure 10). Compromised
web content in Fig. 10 was injected into multiple files such as an HTML file of the
landing URL and JavaScript files referred from the landing URL. Conventional meth-
ods could not identify URLs of these JavaScript files because DOM API code were
injected into all files and semantic gaps occurred on all of them. In other words, this
means that JavaScript files remain compromised even if we deleted the only iframe
tag of the landing URL identified by the conventional methods.

5.3 Client-dependent Redirection with Browser Fingerprinting

The JS 8 contained in the redirection path of Fig. 9 changed the destination URL by
executing the following browser fingerprinting code that gets the version of PDF plugin.
pdf_ver = PluginDetect.getVersion("AdobeReader");
pdf_ver = pdf_ver.split(",");
if ((pdf_ver[0] == 8 && pdf_ver[1] <= 2) || (pdf_ver[0] == 9 && pdf_ver[1] <= 3)) {

document.write("<iframe width=10 height=10 src=’http://DOMAIN6.br/98765.pdf’></iframe>");
}

Website Forensic Investigation to Identify Evidence and Impact of Compromise 17

Table 6. Detected PDF version range by website analysis in multi-client environment

4.0.5 7.0.0 7.1.0 7.1.1 8.0.0 8.1.0 8.1.1 8.1.2 8.1.3 8.1.4 8.2.0 8.2.4 9.0.0 9.1.0 9.1.1 9.3.0 9.3.1 9.3.3 9.4.0 9.4.1 10.0.0 10.0.3 10.1.1
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We analyzed the above code using our system that emulated 23 individual versions
of a PDF based on Table 3 because the code was observed in 2012. As a result, the
versions shown in Table 6 reached malicious URLs and the behavior was along the
condition of the above branch code. In addition, these code features and characteristic
lexical features of URLs suggest that these malicious paths were built using RedKit,
which is known to exploit a PDF’s vulnerability (CVE-2010-0188) [20]. CVE-2010-
0188 exists in Adobe Reader/Acrobat 8.X before 8.2.1 and 9.X before 9.3.1, and the
above code has also been implemented to redirect to the URL of DOMAIN6 when a
PDF version that has the vulnerability is used.

6 Discussion

6.1 Browser Emulator Limitations

The analysis of malicious websites by a browser emulator, such as our system, is known
to have some limitations. For example, a browser emulator is known not to be able to
execute attack code that exploits the vulnerabilities of a web browser and/or its plug-
ins. Our system also cannot execute exploit code as described in Section 4.2. In other
words, our method cannot construct a complete redirection graph including a malware
distribution URL because a malware distribution URL is accessed due to exploit code
execution. Similarly, improving behavior emulation is challenging in browser finger-
printing and diversity of browser implementations. The redirection graphs without ma-
licious paths in Section 4.2 were also one of the factors preventing the construction of
graphs. We admit all these issues can affect the performance of our system. However,
these issues are not specific to our system and affect in some degree all real browsers
and browser emulators. More importantly, our system can identify the evidence and
impact of 71.9% of compromised websites under the limitations. To maximize the dis-
closure of malicious content and detect them, we must combine our system with other
techniques such as honeyclient and machine learning in Section 7.2.

6.2 Evaluation of Compromised Content

In this study, we did not conduct a user study on how the evidence and impact informa-
tion identified by our system can contribute to remedying compromised websites and
preventing malware infections because we evaluated our system using past crawl data
in our experiments. As future work, we will perform a user study on how much and
how long can this identified information increases response rate and reduces response
time required for clean up by webmasters, such as an existing user study [5].

Instead of a user study on webmasters, we calculated the content reduction rate
(CRR) and the URL reduction rate (URR) to evaluate how our system can contribute

18 Y. Takata et al.

to the work of incident responders. The CRR is how much web content on compro-
mised websites would not be analyzed by extracting compromised web content using
our method. The URR is how many URLs our method can filter out by extracting ma-
licious redirection paths from the entire redirection graph of each crawling. These rates
were obtained with the following formulas.

CRR = 1 − 1
n

n∑
k=1

(
of bytes of compromised contentk

of bytes of original contentk

)
, URR = 1 − 1

n

n∑
k=1

(
of access URLs in pathk

of access URLs in crawlk

)
As a result, our method could reduce 99.2% of bytes on the basis of the value in a

Content-Length header (16,568 bytes on average). Furthermore, the URR was 85.0%
(23 URLs on average), i.e., the amount of web content and the number of URLs to be
analyzed were sufficient for incident responders by 0.8% and 15.0%, respectively. The
results show that our method can identify malicious websites both at a content-level and
a URL-level. However, web content dynamically injected, for example, from database
and a .htaccess file cannot be accurately identified. Although we must cooperate with
webmasters to remove the root cause of compromise in the case of dynamic compro-
mises, our method can still provide practical directions for prompt incident response.

6.3 Accuracy of Vulnerability Database

Our system decided a client environment for emulation on the basis of known vulnera-
bility information. The vulnerability information in Table 2 showed the correlation that
old versions have old vulnerabilities and new versions have new vulnerabilities but non-
consecutively, e.g., CVE-2014-0497 exists in Adobe Flash Player before 11.7.700.261,
but 11.7.700.225 is not checked in Table 2. We can infer that these are derived from the
omission of information or untested plugin versions. Therefore, it is important to note
that our analysis method using a multi-client environment cannot identify completely
the target range of client environments on malicious websites. However, the target range
clearly depends on the implementation of malicious websites, and even our method can
get enough beneficial information, as described in Section 5.3.

7 Related work

7.1 Detecting Compromised Websites

The methods of detecting website compromises are generally used for comparing orig-
inal and compromised web content. For example, a comparison method [11] using
HTML files as original content and a comparison method [12] using well known li-
braries and frameworks of JavaScript as original content have been proposed. More-
over, TripWire [13] can notify changes on websites by e-mail to webmasters when file
operations are detected on a web server on which TripWire is installed. However, these
methods have limitations in terms of method application. For example, original content
is necessary for compromise detection, and these methods can detect only compromised
web content on the web server under control. These limitations prevent websites using

Website Forensic Investigation to Identify Evidence and Impact of Compromise 19

external content such as third-party libraries and advertisements from performing effec-
tively. However, using these methods with compromised web content identified by our
method can contribute to finding more malicious websites and detoxifying them.

7.2 Detecting Malicious Websites

Over the past few years, many researchers have proposed methods of detecting drive-
by downloads. A high-interaction honeyclient [16, 21] crawls websites with a decoy
client environment with a vulnerable browser and detects malware downloads by moni-
toring unintended processes and file system accesses, whereas a low-interaction honey-
client [22, 23] crawls websites with a browser emulator and detects malicious behaviors
by signature matching and machine learning. Many learning-based detection methods
of malicious websites have also been proposed and leveraged features from HTML,
JavaScript, URL and social-reputation [24–26]. However, these methods cannot iden-
tify which web content is a redirection origin of a malicious path. In comparison, we
can extract malicious paths more effectively using these research results because all
methods can detect malicious websites with high accuracy.

7.3 Detecting Malicious Redirection

Many methods of detecting a redirection graph on malicious websites rather than for
detecting exploit code and malware have also been proposed [15, 27–29]. Graph-based
methods [27, 28] using the behavioral information of web browsers construct a redi-
rection graph on the basis of redirection information collected from a number of hon-
eyclients or a user’s clients. These methods detect malicious websites by leveraging
co-occurring URLs in graphs and a diverse dataset of graphs. Others [15, 29] focus on
HTTP redirections and executable file downloads on the network and apply a classi-
fier to detect malicious redirection paths. However, these methods fail to construct a
redirection graph of many malicious websites (see Section 4.2) because of the coarse-
grained redirection information. These methods also can identify malicious URLs but
cannot identify malicious content as well as stated in the previous subsection.

8 Conclusion

To identify the evidence and impact of compromise, we proposed a method of construct-
ing a fine-grained redirection graph. Our system with the proposed method analyzes a
website in a multi-client environment while minimizing the number of environment pro-
files. The evidence and impact information includes which web content does the redi-
rection originate, which URLs are associated with the attacks, and which client envi-
ronment is exposed to threats. Our evaluation with compromised website data obtained
during a four-year period showed that our system successfully can identify the precise
position of compromised web content and malicious URL relations, and targeted client
environments. We also showed that it can effectively identify an exploit kit and a vul-
nerability that has been used in malicious websites by leveraging the information. We
believe that our system can contribute to improving the daily work of CSIRTs/security
vendors and expediting compromised website clean-up of webmasters.

20 Y. Takata et al.

References

1. Symantec Corporation, “Internet Security Threat Report 2014 :: Volume 19,” http://www.symantec.com/content/
en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf, 2014.

2. Sophos Ltd., “Security Threat Report 2014,” https://www.sophos.com/en-us/medialibrary/PDFs/other/
sophos-security-threat-report-2014.pdf, 2014.

3. H. Kobayashi and T. Uchiyama, “Keeping Eyes on Malicious Websites - “ChkDeface” Against Fraudulent Sites,” In the
27th Annual FIRST Conference, 2015.

4. Japan’s Ministry of Internal Affairs and Communications, “ACTIVE: Advanced Cyber Threats response InitiatiVE,”
http://www.active.go.jp/en/

5. F. Li, G. Ho, E. Kuan, Y. Niu, L. Ballard, K. Thomas, E. Bursztein, and V. Paxson, “Remedying Web Hijacking: Notifi-
cation Effectiveness and Webmaster Comprehension,” In Proceedings of the International World Wide Web Conference
(WWW), 2016.

6. N. Mavrommatis and M. Monrose, “All Your iFRAMEs Point to Us,” In Proceedings of the USENIX Security Sympo-
sium, 2008.

7. B. Eshete and V.N. Venkatakrishnan, “WebWinnow : Leveraging Exploit Kit Workflows to Detect Malicious URLs,” In
Proceedings of the ACM Conference on Data and Application Security and Privacy (CODASPY), 2014.

8. C. Kolbitsch and B. Livshits, “Rozzle: De-cloaking Internet Malware,” In Proceedings of the IEEE Symposium on
Security and Privacy (SP), 2012.

9. B. Min, and V. Varadharajan, “A Simple and Novel Technique for Counteracting Exploit Kits,” In Proceedings of the
International Conference on Security and Privacy in Communication Networks (SecureComm), 2014.

10. L. Lu, R. Perdisci, and W. Lee, “SURF : Detecting and Measuring Search Poisoning Categories and Subject Descrip-
tors,” In Proceedings of the ACM Conference on Computer and Communications Security (CCS), 2011.

11. K. Borgolte, C. Kruegel, and G. Vigna, “Delta: Automatic Identification of Unknown Web-based Infection Campaigns,”
In Proceedings of the ACM Conference on Computer and Communications Security (CCS), 2013.

12. Z. Li, S. Alrwais, X. Wang, and E. Alowaisheq, “Hunting the Red Fox Online: Understanding and Detection of Mass
Redirect-Script Injections,” In Proceedings of the IEEE Symposium on Security and Privacy (SP), 2014.

13. TripWire, http://www.tripwire.com/
14. G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin, “ReSurf: Reconstructing Web-Surfing Activity From

Network Traffic,” In IFIP Networking Conference, 2013.
15. T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “WebWitness: Investigating, Categorizing, and Mitigating

Malware Download Paths,” In Proceedings of the USENIX Security Symposium, 2015.
16. M. Akiyama, T. Yagi, Y. Kadobayashi, T. Hariu, and S. Yamaguchi, “Client Honeypot Multiplication with High Perfor-

mance and Precise Detection,” IEICE Trans. Inf. and Syst., Vol.E98–D, No.4, 2015.
17. C. Neasbitt, R. Perdisci, K. Li, and T. Nelms, “ClickMiner: Towards Forensic Reconstruction of User-Browser Interac-

tions from Network Traces Categories and Subject Descriptors,” In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2014.

18. N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “Cookieless Monster : Exploring the
Ecosystem of Web-based Device Fingerprinting,” In Proceedings of the IEEE Symposium on Security and Privacy (SP),
2013.

19. Intel Security, Inc., “Styx Exploit Kit Takes Advantage of Vulnerabilities,” https://blogs.mcafee.com/
mcafee-labs/styx-exploit-kit-takes-advantage- of-vulnerabilities/, June, 2013.

20. Intel Security, Inc., “Red Kit an Emerging Exploit Pack,” https://blogs.mcafee.com/mcafee-labs/
red-kit-an-emrging-exploit-pack/, January, 2013.

21. L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “BLADE: An Attack-Agnostic Approach for Preventing Drive-By Mal-
ware Infections,” In Proceedings of the ACM Conference on Computer and Communications Security (CCS), 2010.

22. M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of Drive-by-Download Attack and JavaScript Code,” In
Proceedings of the International World Wide Web Conference (WWW), 2010.

23. A. Dell’Aera, “Thug”: http://buffer.github.io/thug/
24. C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detec-

tion.,” In Proceedings of the USENIX Security Symposium, 2011.
25. D. Canali, M. Cova, and G. Vigna, “Prophiler: A Fast Filter for the Large-Scale Detection of Malicious Web Pages

Categories and Subject Descriptors,” In Proceedings of the International World Wide Web Conference (WWW), 2011.
26. B. Eshete, A. Villafiorita, and K. Weldemariam, “BINSPECT : Holistic Analysis and Detection,” In Proceedings of the

International Conference on Security and Privacy in Communication Networks (SecureComm), 2013.
27. J. Zhang, C. Seifert, J. W. Stokes, and W. Lee, “Arrow: Generating Signatures to Detect Drive-by Downloads,” In

Proceedings of the International World Wide Web Conference (WWW), 2011.
28. G. Stringhini, C. Kruegel, and G. Vigna, “Shady Paths: Leveraging Surfing Crowds to Detect Malicious Web Pages

Categories and Subject Descriptors,” In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2013.

29. H. Mekky, R. Torres, Z. L. Zhang, S. Saha, and A. Nucci, “Detecting malicious HTTP redirections using trees of user
browsing activity,” In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM),
2014.

